

A Model of Hollow Cathode Plasma Chemistry

Ira Katz, John R. Anderson, James E. Polk, John R. Brophy Jet Propulsion Laboratory, Pasadena CA

Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 8-10 July 2002 Indianapolis, IN

A Model of Hollow Cathode Plasma Chemistry

Existing Hollow Cathodes Have Limited Life

Longest duration hollow cathode failed after 3 years

Life limiting mechanisms:

Barium depletion

Orifice erosion or blockage

High Fidelity Models Are Needed

10 year life tests not practical

Life requirements must verified by short tests & analysis

Require detailed, predictive, 1st principles physics models

Must include all failure & performance degradation mechanisms

• JPL Hollow Cathode Model Development

Insert region plasma

2-D model

Limiting results compared with published data

Barium ion transport

Orifice physics including erosion – 1-D model results

Thermal model and Keeper & beyond – coming soon!

Hollow Cathodes are a Critical EP Technology

- Most ion thruster have two hollow cathodes
 - 1. Discharge cathode
 - 2. Neutralizer
 - Planned NASA ion thrusters will use HC's
 - Flight experience is primarily with HC based ion thrusters
 - Present ion thrusters that use RF to ionize the propellant are much less efficient than ones using hollow cathodes
 - Propellant utilization efficiency is critical for future missions

Engineering model ion thruster built by NASA GRC during 8200 hour endurance test at JPL.

Hollow Cathode Fundamentals

- Hollow cathode provides a copious source of electrons
- Device partially ionizes a neutral gas

Input: typically propellant gas, e. g. Xenon

Output: electrons, ions, and unionized gas

Electron current much greater than ions emitted

Electrons emitted from low work function Barium impregnated insert

NASA/GRC Hollow Cathode Life Test

Space Station Plasma Contactor Life Test

Longest test

Tim Sarver-Verhey, George Soulas, Mike Patterson, Scott Kovaleski

NSTAR like hollow cathode

Constant 13A emission current

Hollow cathode failed to start after 3 years of operation

23,776 hours - Starting voltage jumped from 50V to 725V

28,000 hours – Failed to start

Failure analysis

Free BaO and Ba depleted

Tungsten deposits on orifice plate

• Conclusion:

Failure Mechanism-Insert Depletion

Figure I. Drawing of a flight HCA (drawing not to scale).

Figure from "A Review of Testing of Hollow Cathodes for The International Space Station Plasma Contactor"S. D. Kovaleski, M. J. Patterson, G. C. Soulas, T. R. Sarver-Verhey, NASA Glenn Research Center, IEPC-01-271

Barium Ionization Reduces Insert Life

• Previous models of insert life based on equilibrium chemistry

Lipeles & Kan, Kovaleski

Observed Barium loss in EP hollow cathodes not much slower than vacuum cathodes.

BaO-CaO-Al203 Phase Diagram

New model includes barium ionization

$$\begin{aligned} Ba_{\alpha}Ca_{\beta}O_{\chi}(s) &\rightarrow BaO(g) + Ba_{\alpha-1}Ca_{\beta}O_{\chi-1}(s) \\ 2BaO(g) + 1/3 & W &\rightleftharpoons 1/3Ba_{3}WO_{6} + Ba(g) \end{aligned}$$

 $Ba(g) \rightarrow Ba^+ + e^-$ Not Included Previously

• Ionization mean free path the order of a millimeter

Ba ionization potential Insert plasma

5.2eV T insert ~0.1 eV $n_e \sim 10^{21} \text{ m}^{-3}$ $T_e \sim 1 \text{ eV}$

 $\tau_{\text{ionization}} \sim 3 \text{x} 10^{-6} \text{ sec}$

Barium ions hit wall with ~10eV kinetic energy because of sheath of

Results

Very low barium neutral partial pressure in insert region

Barium loss rates greater than models assuming pressure equilibrium

• JPL lead team pursuing new hollow cathode designs that use proven traveling tube cathode techniques to increase insert life

New Approaches For Hollow Cathode Inserts
Iridium-Tungsten Insert
BaO Dispenser

Hollow Cathode Insert Plasma Model

 New physical model – Ion transport dominated by charge exchange with neutrals

- Reduces to ambipolar diffusion equation
- Neglecting axial variation, Bessel function zero sets upper bound on the electron temperature
- Comparison with data
 Malik, Montarde, and Haines, J. Phys D
 33, pp. 2307-2048, 2000

$$\sigma_{CEX} \approx 10^{-18} \text{ m}^2$$

$$T \approx 1300 \text{ K}$$

$$P \approx 10 \text{ Torr}$$

$$n_0 \approx 7.5 \times 10^{22} \text{ m}^{-3}$$

$$\ell_{CEX} = \frac{1}{n_0 \sigma_{CEX}} \approx 10^{-5} \text{ m} \quad << r_{insert}$$

$$-\nabla \bullet [D_a \nabla n] = \dot{n}$$

$$\frac{\partial^2 n}{\partial r^2} + \frac{1}{r} \frac{\partial n}{\partial r} + C^2 n = 0$$

$$C^2 = \frac{n_0 \sigma(T_e) \sqrt{\frac{8eT_e}{\pi m_e}}}{D_a}$$

$$T_e^{data} = 1.1 eV$$
 Comparison probably $T_e^{theory} \approx 1.075 eV$ fortuitously good!

First 2-D Calculations of Insert Region Ion Density

- Solution of ambipolar diffusion equation
- R-Z geometry
- Assumes constant T_e
- Ion density drops exponentially from orifice

- 1.70E+01-1.80E+01
- 1.80E+01-1.90E+01

- 1.90E+01-2.00E+01
- 2.00E+01-2.10E+01
- ■2.10E+01-2.20E+01

1-D Model of Orifice Plasma

- The volume modeled includes the orifice and the chamfered region
- Extension of previous 0-D model
- Assumes quasi neutrality $n = n_i \approx n_e$
- Continuity equations

$$\pi R^2 \left(-\dot{n} + \frac{\partial u_0 n_0}{\partial z} \right) + 2\pi R u_{wall} n = 0$$

$$\pi R^2 \left(\dot{n} + \frac{\partial u_i n}{\partial z} \right) - 2\pi R u_{wall} n = 0$$

$$\pi R^2 \left(e\dot{n} + \frac{\partial j_e}{\partial z} \right) = 0$$

Ion and electron momentum equations

$$n(u_i - u_0) = -D_i \frac{\partial n}{\partial z} + n \mu_i \mathbf{E}$$

$$j_e = e D_e \frac{\partial n}{\partial z} + e n \mu_e \mathbf{E}$$

First Results From 1-D Orifice Model

- Electron temperature rises monotonically in orifice from insert region to chamfered region
- Ion density peaks in orifice
 Ions flow back into insert
 region

Ions flow out toward keeper

 Ion diffusion approximation breaks down in chamfer region

Drop in neutral gas density
Region include for boundary
conditions at orifice exit

• Ionization fraction ~ 10%

Model Shows Ionization Contribution to Current

- Ionization contributes electrons to the current and ions to the wall
- Ionization contributes about an ampere to the current
- Ions impact to the walls probable orifice erosion mechanism
- Power to the wall sum of ionization energy and ion kinetic energy including sheath

Ionization loss profile similar to observed orifice erosion data

Model Results May Explain HC Pressure Rise

- Observation: Hollow cathode pressure rises when discharge is ignited
- Neutral flow between Poisseuille and Knudsen (Dan Goebel private communication)
- Inlet flow ~ 3.5 sccm
- Ionization currents to the walls ~ 1 Amp
- Ions that hit the walls come off as neutrals
- Neutral flow from recombination > 14 sccm
- Increased collisions with the wall acts as increased viscosity resulting in increased pressure drop

A Model of Hollow Cathode Plasma Chemistry

- Model being developed to describe hollow cathode operation and wear mechanisms
 - 1. Insert chemistry
 - 2. Insert region plasma (1 & 2-D)
 - 3. Orifice and chamfer region plasma (1-D variable area)
- Early model results encouraging

Barium ions transported upstream by electric fields

Insert region electron temperature set by ambipolar diffusion

Ionization profile in orifice region consistent with orifice erosion shape

Planned Electric Propulsion Model Development at JPL

Hollow cathode models

Xe⁺⁺ generation

Combined insert & orifice 2-D model

Thermal model including plasma effects

2-D discharge chamber model

Hollow cathode keeper region

Magnetic field effects on transport

Xe⁺⁺ generation